N91-21368

CONTAINERLESS EXPERIMENTATION IN MICROGRAVITY WORKSHOP

ABSTRACT

HIGH TEMPERATURE ACOUSTIC AND HYBRID MICROWAVE/ACOUSTIC LEVITATORS FOR MATERIALS PROCESSING: PROGRESS REPORT

M. Barmatz

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

The physical acoustics group at the Jet Propulsion Laboratory has developed a single mode acoustic levitator technique for advanced containerless materials processing. This technique was successfully demonstrated in ground-based studies to temperatures ≈ 1000 °C in a uniform temperature furnace environment and to temperatures > 1500 °C using laser beams to locally heat the sample. At this time, we are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations will be discussed and results of ground-based acoustic, microwave, and hybrid microwave/acoustic studies will be presented.

CONTAINERLESS EXPERIMENTATION IN MICROGRAVITY WORKSHOP

HIGH TEMPERATURE ACOUSTIC AND

HYBRID MICROWAVE/ACOUSTIC LEVITATORS FOR MATERIALS PROCESSING: PROGRESS REPORT

MARTIN BARMATZ

JPL

JANUARY 18, 1990

PRESENTATION OUTLINE

- HIGH TEMPERATURE SINGLE MODE ACOUSTIC LEVITATOR
 - ISOTHERMAL ENVIRONMENT (≤ 1000 °C)
 - LASER BEAM HEATING (≈ 1500 °C)
 - VIDEO TAPE
- HYBRID MICROWAVE/ACOUSTIC LEVITATOR
 - ADVANTAGES OF MICROWAVE HEATING
 - DEVELOPMENT PROGRAM
 - TEMPERATURE FEEDBACK CONTROL
 - PROTOTYPE HYBRID
 - POTENTIAL SCIENCE AREAS

MICROWAVE/ACOUSTIC

RESEARCH TEAM

DR. M. BARMATZ - MICROWAVE/ACOUSTIC PHYSICIST

DR. J. WATKINS - MICROWAVE/ACOUSTIC PHYSICIST

MR. J. STONEBURNER - ACOUSTIC PHYSICIST

DR. H. JACKSON - THEORETICAL PHYSICIST

DR. C. SHIPLEY - SCIENTIFIC PROGRAMMER

MR. G. AVENI - ACOUSTIC SCIENTIST

MR. C. HAGENLAGER - PROGRAMMER

MR. R. ZANTESON - MACHINIST

HIGH TEMPERATURE SINGLE MODE ACOUSTIC LEVITATOR

- CYLINDRICAL SINGLE MODE POSITIONER
 - FIXED FREQUENCY 20 KHZ DRIVER
 - (011) MODE EXCITATION
- ISOTHERMAL FURNACE (1000 °C)
- 100 WATT NEODYMIUM-YAG LASER DUAL BEAM
 - ≈ 3 mm DIAMETER SHUTTLE TILE SAMPLE
- NON-CONTACT TEMPERATURE MEASUREMENT
 - QUANTUM LOGIC LASER PYROMETER

HIGH TEMPERATURE SINGLE MODE ACOUSTIC LEVITATOR

DRIVER POWER VS TEMPERATURE

YAG - HeNe PATH

MICROWAVE/ACOUSTIC HYBRID LEVITATOR MICROWAVE HEATING ADVANTAGES

- EFFICIENT POWER CONVERSION COMPARED TO LASERS AND ARC LAMPS
- SMALL, LIGHT WEIGHT POWER SYSTEM
- VOLUMETRIC SAMPLE HEATING IS POSSIBLE
- SAMPLE POSITIONING IS NOT CRITICAL
- FAST CONTROLLABLE HEATING OF SAMPLE QUICK RESPONSE TIME
- COLD CHAMBER WALLS ⇒ QUICK CONTROLLABLE COOLING - TEMPERATURE CONTROLLED PROCESSING
- SELECTIVE HEATING OF SAMPLE COMPONENTS
- POSITIONING OF HOT AND COLD SAMPLES SIMULTANEOUSLY (DROP COALESCENCE)

MICROWAVE/ACOUSTIC HYBRID LEVITATOR

DEVELOPMENT PROGRAM

- EVALUATE MICROWAVE HEATING CONCEPT APPLIED TO CONTAINERLESS PROCESSING
 - MODEL ABSORPTION OF A SPHERE
 - MODEL TEMPERATURE PROFILE WITHIN SPHERE INVERTED TEMPERATURE PROFILE (HOTTEST IN CENTER)
 - TEMPERATURE FEEDBACK CONTROL
 - MATERIALS CHARACTERIZATION
 DIELECTRIC CONSTANT
 - GLASSES (LEAD BORATE 900 °C)
 - CERAMICS (ZEOLITE > 1100 °C)
 - DEMONSTRATE HYBRID LEVITATOR CONCEPT
 - PROTOTYPE 20 KHZ (ACOUSTIC)
 LEVITATION 10 WATTS (MICROWAVE)
 - HIGH POWER HYBRID 1KW MICROWAVE SOURCE

403

TEMPERATURE CONTROL OF ALUMINA SILICATE

TIME (SEC)

(O°) BRUTARBY

MICROWAVE / ACOUSTIC HYBRID LEVITATOR

PIEZOELECTRIC DRIVER - SINGLE MODE POSITIONER

MICROWAVE/ACOUSTIC HYBRID LEVITATOR POTENTIAL SCIENCE AREAS

- TEMPERATURE CONTROLLED PROCESSING
 - QUICK HEATING AND COOLING
 - PHASE TRANSFORMATION STUDIES
 - GLASS AND CERAMIC MATERIALS SYNTHESIS
 - TEMPERATURE MODULATION STUDIES
- ENHANCED MATERIALS PROCESSING DUE TO INVERTED TEMPERATURE PROFILE
 - UNIQUE ANNEALING OR ZONE REFINING
- NON-CONTACT THERMOPHYSICAL PROPERTIES MEASUREMENTS
 - SPECIFIC HEAT, DIELECTRIC PROPERTIES